

Fixed vs. Random

- Fixed isn't "wrong," just usually isn't of interest as limited to "case study".
- Fixed Effects Inference
 "I can see this effect in this cohort"
- Random Effects Inference
 - "If I were to sample a new cohort from the population I would get the same result"

Contents

- Introduction & recap
- Variance components
- Hierarchical model
- RFX and summary statistics
- Variance/covariance matrix
- « Take home » message

Variance-Covariance matrix

40 60 80 100 120 Weight (kg) μ =80kg, σ =14kg (σ ²=200)

Each completely characterised by μ (mean) and σ^2 (variance), i.e. we can calculate $p(l|\mu,\sigma^2)$ for any l

Example II					
Stimuli:	Auditory Presentation (SOA = 4 secs) of words				
	Motion	Sound	Visual	Action	
	"jump"	"click"	"pink"	"turn"	
Subjects:	(i) 12 control subjects				
Scanning:	fMRI, 250 scans per subject, block design				
Question:	What regions by the sema the words?	s are affect ntic conten	ed t of <u><i>U</i>.</u>	Noppeney et	al.

Summary

Linear hierarchical models are general enough for typical multi-subject imaging data (PET, fMRI, EEG/MEG).

Summary statistics are robust approximation for group analysis.

Also accomodates multiple contrasts per subject.

Notes !

▶ Coefficients (= parameters) are estimated using the Ordinary Least Squares (OLS) by minimizing the fluctuations, - variability – variance – of the noise – the residuals

) Because the parameters depend on the scaling of the regressors included in the model, one should be careful in comparing manually entered regressors

• The residuals, their sum of squares and the resulting tests (t,F), **do not** depend on the scaling of the regressors.

Top Ten Things Sex and Brain Imaging Have in Common

- 10. It's not how big the region is, it's what you do with it.
- 9. Both involve heavy PETting or powerful magnetism.
- 8. It's important to select regions of interest.
- 7. Experts agree that timing is critical.
- 6. Both require correction for motion.
- 5. Experimentation is everything.
- 4. You often can't get access when you need it.
- 3. You always hope for multiple activations.
- 2. Both make a lot of noise.
- 1. Both are better when the assumptions are met.