Detecting signs of consciousness in severely brain injured patients with voluntary control of sniffing: a cohort study.

Vanessa Charland-Verville

Coma Science Group
Neurology Department & Cyclotron Research Centre
University of Liege & Liege University Hospital
Liege, Belgium
in collaboration with
Weizmann institute of science
Rehovot, Israel
9th World Congress on Brain Injury
March 23rd, Edinburgh, Scotland
Sniffing enables communication and environmental control for the severely disabled

Anton Plotkina,1, Lee Selaa,1, Aharon Weissbroda, Roni Kahanaa, Lior Haviva, Yaara Yeshuruna, Nachum Sorokerb,c, and Noam Sobela,2

aDepartment of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel; bLoewenstein Rehabilitation Hospital, Raanana 43100, Israel; and cThe Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel

Edited* by Brian A. Wandell, Stanford University, Stanford, CA, and approved June 24, 2010 (received for review May 13, 2010)
Aim: Detecting signs of consciousness in non-communicative patients with disorders of consciousness.

- Through voluntary control of respiration (non-invasive)
- Sniffs rely on widely distributed neural network, allowing for increased conservation following injury
- Device usage shared neural substrates with language production, rendering sniffs a promising bypass mode of communication
Methods

Sniff Controller

Sniff-dependent interface that measures nasal pressure and converts it into electrical signals.

Task:
- 5 min. baseline
- 30 sec. stimulus
- 60 sec. rest
- Between 15-25 events

“Take a deep sniff in order to stop the music.”

“Just breathe normally.”

Sniff magnitude beyond a set threshold
Methods

Population
33 DOC patients: 11 VS/UWS; 3 MCS-; 17 MCS+; 2 EMCS (19 men, mean age = 35; SD = 13.27)
Etiology (n = 22 traumatic)
Since insult (mean = 40 months; SD = 34.9)

Analysis
STATA Software (version 12, Texas, USA)
- T-test differences for reaction times in rest periods vs music events
Results

Responders: 0/11 VS/UWS; 1/3 MCS-; 4/17 MCS+; 1/2 EMCS

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Gender</th>
<th>CRS-R</th>
<th>Etiology</th>
<th>Time since</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>F</td>
<td>MCS-</td>
<td>Anoxic</td>
<td>1 year 6 months</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>F</td>
<td>MCS+</td>
<td>TBI</td>
<td>6 years 7 months</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>F</td>
<td>MCS+</td>
<td>Anoxic</td>
<td>1 year 5 months</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>F</td>
<td>MCS+</td>
<td>TBI</td>
<td>1 year 9 months</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>F</td>
<td>MCS+</td>
<td>TBI</td>
<td>3 years 6 months</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>M</td>
<td>EMCS</td>
<td>TBI</td>
<td>2 years 5 months</td>
</tr>
</tbody>
</table>
Sniffing performance

48 year-old woman; MCS-; 18 months post cardiac arrest

1st assessment

- Red: Succeeded
- Gray: Not succeeded

Reaction time (sec)

Events
Sniffing performance

48 year-old woman; MCS-; 18 months post cardiac arrest

2nd assessment

- Red bars: Succeeded
- Gray bars: Not succeeded
Conclusion

Sniff Controller

Allowed to identify voluntary control of respiration in a patient without command following

- Complementary way to assess the level of consciousness at bedside
- Alternative tool to fMRI\(^1\) or EEG based\(^2\) non-motor dependent communication
- Future perspective: trying more complex communication/self-expression

THANK YOU!