What awareness in coma?

Faculty of health medicine and life sciences
Maastricht University

March 15 2010, Maastricht, The Netherlands

Athena Demertzi, MSc
Neuropsychologist, PhD candidate medical sciences

Coma Science Group
Centre de Recherches du Cyclotron &
CHU Neurology Department, Liège University Hospital
BELGIUM

www.comascience.org
Overview

- Definitions
- Scientific perspective
 - Neural correlate of consciousness
- Clinical interest
 - Diagnosis, prognosis, treatment
- Ethical issues
 - End-of-life
 - Quality of life
- Conclusions

‘Le scaphandre et le papillon’ (2007)
Direction: Julian Schnabel
Definitions
Reducing consciousness to 2D

Definitions | Scientific perspective | Clinical interest | Ethical issues | Conclusions

Consciousness = command following

- Lucid Dreaming
- REM Sleep
- St I-II Sleep
- St III-IV Sleep
- General Anesthesia
- Coma
- Minimally Conscious State
 - more than reflex movements
 - no communication
- Conscious Wakefulness
- Locked-in syndrome
- Drowsiness
- Vegetative state

Wakefulness = eyes opening

Laureys, *Trends in Cognitive Sciences* 2005

www.comascience.org
Locked-in syndrome (LIS)

- Presence of sustained eye opening
- Aphonia or severe hypophonia
- Ocular mode of communication
- Quadriplegia or quadriparesis-Types:
 - Classical
 - Incomplete
 - Total
- Preserved cognitive abilities
Questionnaire

Age category
Gender
Nationality (NL, BE..)
Profession Other (...)

Would you like to keep alive if you were in:
1. Vegetative state (> 1year)?
2. Minimally conscious state (> 1year)?
3. Locked-in syndrome (> 1year)?
Scientific perspective
Consciousness ≠ whole brain

Laureys et al, Lancet Neurology 2004
Consciousness ≈ frontoparietal

areas systematically dysfunctional in the vegetative state

areas resuming metabolism after recovery from the vegetative state

Laureys et al, Neuroimage 1999

Laureys et al, J Neurol Neurosurg Psychiatry, 1999
Two awareness networks

GLOBAL NEURONAL WORKSPACE

INTERNAL AWARENESS NETWORK

EXTERNAL AWARENESS NETWORK

Boly et al., Human Brain Mapping 2008

www.comascience.org
External and internal awareness

NEURAL CORRELATE OF EXTERNAL (SENSORY) AWARENESS

Peri-luminal laser stimulation on hand (N=24)

perceived (433±23 mJ) > unperceived (438±21 mJ)

Boly et al, PNAS 2007
(also Dehaene et al, Nat Rev Neuroci 2001; Rees et al, Nat Rev Neuroci 2001)

NEURAL CORRELATE OF INTERNAL (SELF) AWARENESS

Self-referential stimuli

Laureys et al, Consciousness & Cognition 2007
(also Mason et al, Science, 2007; Golland et al, Neuropsychologia 2008)

OWN NAME
- 15 controls: Perrin et al. 2005
- 16 controls: Kampe et al. 2003
- 3 controls: Staffen et al. 2006
- 1 MCS patient: Laureys et al. 2004
- 1 VS patient: Staffen et al. 2006

OWN FACE
- 12 controls: Platek et al. 2006
- 6 controls: Kircher et al. 2001
“Resting state” default brain activity

Anti-correlation of internal and external awareness networks

Spontaneous brain fluctuations predict conscious perception of external stimuli

Switching 1/20s (0.05 Hz)

Boly et al, Ann NY Acad Sci 2009

Boly et al, PNAS 2007
External vs internal awareness

Anti-correlated
Switching 0.05 Hz
(range 0.01-0.1Hz)
/20 s
(range 10-100 s)

Vanhaudenhuyse & Demertzi, *J Cogn Neurosci* in press
www.comascience.org
“Resting state” default brain activity

Vanhaudenhuyse et al, *Brain*, 2010
4A. Do you think functional neuroimaging can differentiate between the vegetative and minimally conscious states?

4B. If a behaviorally vegetative patient would show normal activation of functional neuroimaging would this change your diagnosis?
Clinical interest
Outcome

- Acute Brain Injury
- Coma
- Locked-In Syndrome
- Vegetative State
 - Fast Recovery
 - Minimally Conscious State
 - Recovery of Consciousness
- Permanent Vegetative State
- Brain Death
- Permanent Minimally Conscious State?

Laureys, *Scientific American* 2007
n=103 post-comatose patients

45 clinical consensus diagnosis ‘vegetative state’
18 signs of awareness (Coma Recovery Scale)

40% potential misdiagnoses

Schnakers et al., *BMC Neurology* 2009
Eye tracking: use a mirror!

Vanhaudenhuyse et al., *J Neurol Neurosurg Psychiatry* 2008

www.comascience.org
‘Self’ processing in MCS

Meaningless Noise

Acoustically Matched Cries

Patient’s Own Name

Laureys et al., *Neurology* 2004
fMRI: predictor of outcome?

Definitions | Scientific perspective | Clinical interest | Ethical issues | Conclusions

Di et al., *Neurology* 2007
Coleman et al., *Brain* 2008

ATYPICAL ‘HIGH LEVEL’ CORTICAL ACTIVATION
P300 to the own name

Perrin et al., Archives in Neurology 2006

www.comascience.org
“Mindreading”

Signs of consciousness on fMRI

≠ “automatic” brain response
Yes-No communication with fMRI

Monti & Vanhaudenhuyse, Coleman, Boly, Pickard, Tshibanda, Owen, Laureys
New England J Med 2010

www.comascience.org
Communication via fMRI

Definitions

Scientific perspective

Clinical interest

Ethical issues

Conclusions

<table>
<thead>
<tr>
<th>response option</th>
<th>encoding parameters</th>
<th>single-trial time courses and RTCs</th>
<th>ranking (correlation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>brain location 'motor imagery' ROI</td>
<td></td>
<td>1st (0.89)</td>
</tr>
<tr>
<td></td>
<td>onset 0s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset 10s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>brain location 'mental calculation' ROI</td>
<td></td>
<td>2nd (0.52)</td>
</tr>
<tr>
<td></td>
<td>onset 5s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset 10s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>brain location 'motor imagery' ROI</td>
<td></td>
<td>3rd (0.06)</td>
</tr>
<tr>
<td></td>
<td>onset 5s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset 15s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>brain location 'mental calculation' ROI</td>
<td></td>
<td>4th (-0.20)</td>
</tr>
<tr>
<td></td>
<td>onset 10s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset 20s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sorger et al, *Prog Brain Res* 2009

www.comascience.org
Coma or total locked-in syndrome?

21-y old woman
basilar artery thrombosis - day 49

Other names PASSIVE
Count TARGET (other name)
Own name PASSIVE
Count TARGET (own name)

Schnakers et al, *Neurology*, 2008
Schnakers et al, *Neurocase*, 2009

www.comascience.org
Questionnaire

Do you think that:

5A. Patients in a VS can feel pain?
5B. Patients in a VS should receive pain medication?

6A. Patients in a MCS can feel pain?
6B. Patients in a MCS should receive pain medication?

7A. Patients in a LIS can feel pain?
7B. Patients in a LIS should receive pain medication?

Assuming surrogate informed consent, is it acceptable to do functional neuroimaging studies on:

8A. Pain perception in the VS?
8B. Perception of thirst and hunger in the VS?

9A. Pain perception in the MCS?
9B. Perception of thirst and hunger in the MCS?

Do you think invasive interventions are justified to...

10A. Diagnose and study disorders of consciousness or to provide prognostic information?
10B. Develop treatments for disorders of consciousness?
Treatment

- symptomatic
- curative

"...a (woman’s) brain is a mystery... and even more so in this state”

Pedro Almodovar - Hable con ella

www.comascience.org
Nociception and pain

Nociception Coma Scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Item</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR RESPONSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Localization to Noxious Stimulation</td>
<td>The non-stimulated limb must locate and make contact with the stimulated limb part at the point of stimulation.</td>
</tr>
<tr>
<td>2</td>
<td>Flexion Withdrawal</td>
<td>There is isolated flexion withdrawal of at least one limb. The limb must move away from the point of stimulation.</td>
</tr>
<tr>
<td>1</td>
<td>Abnormal Posturing</td>
<td>Movements, stereotyped or extension of the upper and/or lower extremities, occurs immediately after the stimulus is applied.</td>
</tr>
<tr>
<td>0</td>
<td>None/Placid</td>
<td>There is no discernible movement following application of noxious stimulation, secondary to hypnosis or disinhibition.</td>
</tr>
<tr>
<td>VERBAL RESPONSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Intelligible Verbalisation</td>
<td>Production of words in response to noxious stimulation. Each verbalisation must consist of at least 1 consonant-vowel-consonant (CVC) triad.</td>
</tr>
<tr>
<td>2</td>
<td>Vocalisation / Oral Movement</td>
<td>Occasional vocalisation or repetitive facial grimace with obvious physical movement</td>
</tr>
<tr>
<td>1</td>
<td>Groans</td>
<td>Groaning or gasping</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
<td>Arousal</td>
</tr>
<tr>
<td>VISUAL RESPONSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Eyeball Movements</td>
<td>Eye movements include slight deviation or fixation point</td>
</tr>
<tr>
<td>2</td>
<td>Eye movement</td>
<td>Eyelid opening</td>
</tr>
<tr>
<td>1</td>
<td>Sustained</td>
<td>Sustained fixation</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
<td>No change</td>
</tr>
<tr>
<td>FACIAL EXPRESSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cry</td>
<td>Cries are observed spontaneously or due to noxious stimulation</td>
</tr>
<tr>
<td>2</td>
<td>Grimace</td>
<td>Gyrate or observe spontaneous facial grimace</td>
</tr>
<tr>
<td>1</td>
<td>Oral reflexive movements / Sustained response</td>
<td>Chomping, jaw clenching, tongue protrusion, vocalisation, chewing movement</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
<td>No change</td>
</tr>
</tbody>
</table>

Schnakers et al, *Pain*, in press

www.comascience.org
Do they feel pain?

Noxious electrical stimulation

Laureys et al., *Neuroimage* 2002

Low level disconnected cortical activation

www.comascience.org
Pain in minimally conscious state

Definitions | Scientific perspective | Clinical interest | Ethical issues | Conclusions

Boly et al., Lancet Neurology 2008

www.comascience.org
Curative treatment: Drugs? no evidence based therapy

Demertzi et al., Expert Rev Neurotherapeutics 2008
Schnakers et al., J Neurol Neurosurg Psychiatry 2008

www.comascience.org
Curative treatment: Deep brain stimulation?

Object Naming During Titration

Schiff et al., Nature 2007
Do you think it is acceptable to withhold or withdraw treatment in patients:

11. In the vegetative state?
12. In the minimally conscious state?
13. In the locked-in syndrome?

Are you religious?
If yes, please state your affiliation
Ethical challenges
Quality of life

Short Form-36 in brainstem stroke LIS patients (n=17; duration 6±4 y)

Laureys et al., Prog Brain Res, 2005

Reintegration to Normal Living Index in ALS patients (n=30; duration 6±5 y)

Lulé et al., Prog Brain Res, 2009

www.comascience.org
Quality of Life

Case 1
24-year-old girl
LIS for 6 years
Good social interactions
Occasionally depressed
No suicidal thoughts
Never considered euthanasia
No Reanimation in case of cardiac arrest

- **Control subjects n=820**
- **X Locked-in patients n=65**

Bruno et al., *in preparation*
Bruno et al., *Pediatric Neurology* 2009
Quality of Life

Case 2

17-year-old girl
LIS for 1 year
Good social interactions
Occasionally depressed
No suicidal thoughts
Never considered euthanasia
Reanimation in case of cardiac arrest

Better than ever before
+ 5 As good as best period in my life
+ 4 Almost as good as best period in my life
+ 3 Very good
+ 2 Good
+ 1 Rather a bit on the good side
0 Neither good nor bad
- 1 Rather a bit on the bad side
- 2 Bad
- 3 Very bad
- 4 Almost as bad as worst period in my life
- 5 As bad as worst period in my life

Worse than ever before

- Control subjects \(n = 820 \)
- X Locked-in patients \(n = 65 \)

Bruno et al., *in preparation*
Bruno et al., *Pediatric Neurology* 2009

www.comascience.org
March 20, 2016

The Coma Science Society

Locked-in: Gefangen im eigenen Körper
Karl-Heinz Pantke

If you want to talk to me, I look up for yes
Julia Tavalaro and Richard Tayson

Putain de silence
Philippe Vigand, Stéphane Vigand

A Love Story
Anne Cherrier

Laetitia Bohn-Derrien

Temoignage
Fervane

March 20, 2016
Conclusions
Neural correlates of conscious awareness
≈ fronto-parietal neuronal ‘global workspace’
≈ cortico-thalamo-cortical functional connectivity

Diagnostic use
≈ 40% signs of consciousness in vegetative state

Prognostic use
(f)MRI prospective multicenter studies

Therapeutic use
symptom & pain treatment / curative thalamic DBS

Ethical issues

Tononi & Laureys, The Neurology of Consciousness 2009
Laureys & Boly, Nature Clinical Practice 2008
Owen, Schiff & Laureys, Prog Brain Res 2009
THANK YOU

Slides can be downloaded from www.comascience.org

PhD candidates:
Audrey Vanhaudenhuyse ARC
Marie-Aurélie Bruno FNRS
Athena Demertzi, Marie-Curie
Olivia Gosseries FNRS
Camille Chatelle FNRS
Marie Thonnard non-FRIA
Victor Cologan FRIA
Jean-Floris Tshibanda MD
Pierre Boveroux MD CHU
Muriel Kirsch MD
Audrey Maudoux MD FNRS
Isabelle Lutte MD ULB

PhDs:
Melanie Boly MD
Didier Ledoux MD
Caroline Schnakers
Quentin Noirhomme Engineering
Andrea Soddu Physics
Betina Sorger Maastricht
Dorothée Lulé Tubingen

Collaborations:
NY J Giacino, N Schiff, J Fins
Cambridge A Owen
Milano M Massimini
Wisconsin G Tononi
Tubingen & Wurzburg A Kübler
Paris L Puybasset
Hangzou China H Di
Salzburg M Schabus
Lyon F Perrin

Visiting fellows: Natalia Lapitskaia, Remy Lehembre, Jonathan Orban, Francisco Gomez...